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DISSOLUTION OF A SOLID PHASE BY FLUID
FLOWING IN A CYLINDRICAL PIPELINE

R. Z. Shirgazina and P. I, Tugunov UDC 541.1:532,72

The problem of mass transfer from the inner surface of a cylindrical pipeline in the presence
of dissolution of a solid phase in the turbulent fluid flow is examined,

The heterogeneous transformation surface relative to the inner wall of a pipeline is

= hy (1 —ggcos @) (1 4 kn). (1)

The distribution (1) occurs in main pipelines after they are cleaned with heavy mechanical devices —
scrapers and separators, Due to their intrinsic weight, solid deposits are more completely removed from the
bottom of the pipe: ¢ = 0, h = h,(1—g;) (1+ kn) is the smallest thickness of the deposits along the lower gener-
atrix of the pipe; ¢ = m, h=hy(1+ g;) (1 + kn) is the greatest thickness along the upper generatrix, 0 = ¢ = 7.
The factor (1 + kn) takes into account the change in thickness of the solid phase along the pipe as a result of
deformation and wear of the packing elements of the separators and scrapers.

Particular cases of the problem proposed are examined in [ 1], which is concerned with the problems of
mass transfer in main pipelines.

We are examining the case of large diffusion Prandtl numbers Pr = v/D, Then, the concentration of the
impurity in the fluid will change within the viscous sublayer [2] and for a one-dimensional stabilized flow, its
average (over the cross section of the pipe) value can be determined from the following equation [3-5]:

09,4 Pe 00, . Pe Pe . ‘ Pe
i = 2 __S§tPe(®,—0;)=0, i=1 for — (r—1) <N — 1, (=2 £ NG ES — (t—1y).
o 2 on (B ) 9 ( 1) SN 5 o L 2 (t—1). (2)
With the appearance of a clean pipe surface, for any cross section, Eq. (2} has the form
== 4 — —2 —StPe(®,— 6 — =0,
ot T 9 an ( © 3) ( o ) (3)

which stems from the form of the distribution of the third phase (characteristic (1)) and occurs for £,(7) = =
£9(7). Here and in (2) above, £;(7) and &,(7), which are functions determined from the conditions ¢ (£,(7),
7) =0, and ¢(&,(T), T) =7, indicate the boundary coordinates of the clean border of the pipe. The impurity con-
centration function is continuous along the pipe, so that the following boundary conditions are valid:
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0,=6, forn= % (r—) B (), T = Os(E (), 1)

(4)
B3 E. (1), =0,
In solving (1)~(4), we used the equation of the kinetics of dissolution [6]
dH _ Nu )
== (6,—6). 5
i (0, —©) (5)

We are examining the case h « 1. Then, the reaction surface (Eq. (1)) can be represented as follows: h
=hy(1+ 2e¢/7) (1+ kn), where hy = hy(1— gy), &1 = g,/(1—g,).

The solution of (1)-(5) reduces to finding the solution of a differential equation for the function ¢ (71,.7),
characterizing the geometry of the moving separation boundary:

oy Pe dop Pe k Nu L1 _Pe k
= S (Nuf—— ) — = 2:——(Nu == .
ar 4 0n ( + 4 14 ky ¢ n 7 2g, + 4 14k (6)
The solution of (6) has the followin;g form:
exp { X (4St+ R _ 4 Sty('q)>dn}
9 l+kn = _
P | — T— 48t 4 — — St dnid
D R [
and y(n) satisfies Eq. (7)
Pe dy Pe &k ~ Nu o Pe %
— L Nu - —— —_—— =-——[Nu4— . 7)
1 dn+( : 1—|—kn)y on Y 281( T3 1+kn) (

The function ¥ (Re/4 (1 — 7)) is determined from the condition ¢ (§,(7), 7) = 0.

The numerical solution of (7) shows that for k ~ 10" 4— 107° the function y can be assumed to be a con-
stant equal to 7(1+ & §-%). In this case

28505 (1 + k1)

' ke 0. _ kel 1 4St i
T 0 g—0.5 [REg ndd
A ‘l+kn+T_€bo 1 5 o (1 1r1<15)}exp{83'5 n}

Here

2¢9-5 (1—¢g) Ina S} / Pe ‘ I+ g5
= S NE—— S hol ) PR LA P L N
P=1t T e [‘ e [t < w S ) e
The expression found permits determining, for given dimensions of the reaction surface, from the condition
¢ =7 the duration of the process of dissolution of the solid phase from the inner surface of pipeline. For k = 0,
it goes over into the equation for the dependence of the dissolution time of the solid phase, distributed relative
to the inner wall of the pipe according to the law h = h;(1— ¢4 cos ¢) (Eq. (1)); if at the same time £, —~ 0, we
obtain the dissolution time 7 = 4 {_1— oo L (144203 for h=hy[11.
Nu 6, Pe 0,

(0]

NOTATION

Here h=4/d, hy= 6,/d, n = x/d; 6, average (over the cross section of the pipe) thickness of the solid
substance; d = 2R, diameter of the pipeline; x, longitudinal coordinate; ¢, polar angle; &, constant (0 < gy =
1); v, kinematic coefficient of molecular viscosity; D, coefficient of molecular diffusion of the impurity; ©j,
average concentration of the impurity in the core of the flow; @, concentration of the impurity on the surface
of dissolution, which is constant within the diffusion sublayer; W, average velocity of the flow; jw, impurity
flux from the dissolution surface; T =t D/R?, dimensionless time; 1 =t,D/R?, time at which the border of the clean pipe
surface begins to form at the initial section as a result of total transformation of the solid phase into the sol-
vent flow; H, thickness of the solid phase layer; kp, rate coefficient for dissolution; kp =D/A, A, thickness of
the diffusion sublayer; Nu = kpd /D, diffusion Nusselt number; Re = wd/v, Reynolds number; Pe = RePr, diffu-
sion Peclet number; St = j,,/pw (0, —®), Stanton number.
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MASS TRANSFER FROM A MOVING BUBBLE
DURING A SLOW CHEMICAL REACTION

Yu. I. Babenko _ UDC 536.24.01

A previously proposed method for solving inhomogeneous problems in the theory of heat and
mass transfer is refined. As an illustration, the stationary mass transfer from a moving bub-
ble during a slow chemical reaction of first or second order is examined.

We shall examine the problem

| 2 )
L _PC @ 1), 0<t<o, 0<T< 00, (M
ot og

Cleeo = Cs (1) Cl=w = 0; Clo =0, (2)

which describes mass transfer in a semiinfinite region under the action of a source. It is necessary to find the
quantity qg = (8C/8%) g= g, which determines the mass flux through the boundary of the region.

As in [1], we shall represent Eq. (1) in the form

where the fractional differentiation operators are defined by the expressions
T

. 1 d
D'ft)= —— | (z—2y "V f(e)dz, —oo<<v<<l.
f0= iy ) e
0
The concentration gradient sought at the boundary is obtained as follows [1]. We apply the operator in-
verse to D — 8/8£ onthe left side of Eq, (3)., For (D —8/8¢) !, we previously found an expression in the form of
an infinite series. It turns out that the inverse operator can also be written in the form

©

3N\, :
@W—adf@n:SﬁHW”Mwmy (4)

a

The following expression, defined in [2], enters into the operator in the integrand:

a2 5 oy 4 : a .
e—aDVEF(E, 1) o j‘ erfc (W2l/r-—z ) FE, 2)dz. (5)
0
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